Activin Receptor Type IIB/ACVR2B (2S5) Rabbit Monoclonal Antibody

Activin Receptor Type IIB/ACVR2B (2S5) Rabbit Monoclonal Antibody

Size1:50μl Price1:$128
Size2:100μl Price2:$230
Size3:500μl Price3:$980
SKU: AMRe06556 Category: Rabbit Monoclonal Antibody Tags: , ,

Datasheet

Summary

Production Name

Activin Receptor Type IIB/ACVR2B (2S5) Rabbit Monoclonal Antibody

Description

Rabbit Monoclonal Antibody

Host

Rabbit

Application

WB

Reactivity

Human,Mouse,Rat

 

Performance

Conjugation

Unconjugated

Modification

Unmodified

Isotype

IgG

Clonality

Monoclonal

Form

Liquid

Storage

Store at 4°C short term. Aliquot and store at -20°C long term. Avoid freeze/thaw cycles.

Buffer

Supplied in 50mM Tris-Glycine(pH 7.4), 0.15M NaCl, 40%Glycerol, 0.01% New type preservative N and 0.05% BSA.

Purification

Affinity purification

 

Immunogen

Gene Name

ACVR2B

Alternative Names

ActR IIB; ACVR 2B; HTX4;

Gene ID

93

SwissProt ID

Q13705

 

Application

Dilution Ratio

WB: 1:1000

Molecular Weight

58kDa

 

Background

On ligand binding, forms a receptor complex consisting of two type II and two type I transmembrane serine/threonine kinases. Type II receptors phosphorylate and activate type I receptors which autophosphorylate, then bind and activate SMAD transcriptional regulators. Receptor for activin A, activin B and inhibin A. Transmembrane serine/threonine kinase activin type-2 receptor forming an activin receptor complex with activin type-1 serine/threonine kinase receptors (ACVR1, ACVR1B or ACVR1c). Transduces the activin signal from the cell surface to the cytoplasm and is thus regulating many physiological and pathological processes including neuronal differentiation and neuronal survival, hair follicle development and cycling, FSH production by the pituitary gland, wound healing, extracellular matrix production, immunosuppression and carcinogenesis. Activin is also thought to have a paracrine or autocrine role in follicular development in the ovary. Within the receptor complex, the type-2 receptors act as a primary activin receptors (binds activin-A/INHBA, activin-B/INHBB as well as inhibin- A/INHA-INHBA). The type-1 receptors like ACVR1B act as downstream transducers of activin signals. Activin binds to type-2 receptor at the plasma membrane and activates its serine-threonine kinase. The activated receptor type-2 then phosphorylates and activates the type-1 receptor. Once activated, the type-1 receptor binds and phosphorylates the SMAD proteins SMAD2 and SMAD3, on serine residues of the C-terminal tail. Soon after their association with the activin receptor and subsequent phosphorylation, SMAD2 and SMAD3 are released into the cytoplasm where they interact with the common partner SMAD4. This SMAD complex translocates into the nucleus where it mediates activin-induced transcription. Inhibitory SMAD7, which is recruited to ACVR1B through FKBP1A, can prevent the association of SMAD2 and SMAD3 with the activin receptor complex, thereby blocking the activin signal. Activin signal transduction is also antagonized by the binding to the receptor of inhibin-B via the IGSF1 inhibin coreceptor.

 

Research Area