Eph receptor B3 (8N7) Rabbit Monoclonal Antibody

Eph receptor B3 (8N7) Rabbit Monoclonal Antibody

Size1:50μl Price1:$138
Size2:100μl Price2:$240
Size3:500μl Price3:$980
SKU: AMRe10512 Category: Rabbit Monoclonal Antibody Tags: , ,

Datasheet

Summary

Production Name

Eph receptor B3 (8N7) Rabbit Monoclonal Antibody

Description

Rabbit Monoclonal Antibody

Host

Rabbit

Application

WB

Reactivity

Human,Mouse,Rat

 

Performance

Conjugation

Unconjugated

Modification

Unmodified

Isotype

IgG

Clonality

Monoclonal

Form

Liquid

Storage

Store at 4°C short term. Aliquot and store at -20°C long term. Avoid freeze/thaw cycles.

Buffer

Rabbit IgG in phosphate buffered saline , pH 7.4, 150mM NaCl, 0.02% New type preservative N and 50% glycerol. Store at +4°C short term. Store at -20°C long term. Avoid freeze / thaw cycle.

Purification

Affinity purification

 

Immunogen

Gene Name

EPHB3

Alternative Names

Cek10; EK2; Embryonic kinase 2; ephb3; ETK2; hEK2; Mdk5; Sek4; TYRO6;

Gene ID

2049

SwissProt ID

P54753

 

Application

Dilution Ratio

WB 1:500-1:2000

Molecular Weight

110kDa

 

Background

Receptor for members of the ephrin-B family. Binds to ephrin-B1 and -B2. Receptor tyrosine kinase which binds promiscuously transmembrane ephrin-B family ligands residing on adjacent cells, leading to contact-dependent bidirectional signaling into neighboring cells. The signaling pathway downstream of the receptor is referred to as forward signaling while the signaling pathway downstream of the ephrin ligand is referred to as reverse signaling. Generally has an overlapping and redundant function with EPHB2. Like EPHB2, functions in axon guidance during development regulating for instance the neurons forming the corpus callosum and the anterior commissure, 2 major interhemispheric connections between the temporal lobes of the cerebral cortex. In addition to its role in axon guidance plays also an important redundant role with other ephrin-B receptors in development and maturation of dendritic spines and the formation of excitatory synapses. Controls other aspects of development through regulation of cell migration and positioning. This includes angiogenesis, palate development and thymic epithelium development for instance. Forward and reverse signaling through the EFNB2/EPHB3 complex also regulate migration and adhesion of cells that tubularize the urethra and septate the cloaca. Finally, plays an important role in intestinal epithelium differentiation segregating progenitor from differentiated cells in the crypt.

 

Research Area