Summary
Performance
Immunogen
Application
Background
valosin containing protein(VCP) Homo sapiens The protein encoded by this gene is a member of a family that includes putative ATP-binding proteins involved in vesicle transport and fusion, 26S proteasome function, and assembly of peroxisomes. This protein, as a structural protein, is associated with clathrin, and heat-shock protein Hsc70, to form a complex. It has been implicated in a number of cellular events that are regulated during mitosis, including homotypic membrane fusion, spindle pole body function, and ubiquitin-dependent protein degradation. [provided by RefSeq, Jul 2008],disease:Defects in VCP are the cause of inclusion body myopathy with early-onset Paget disease and frontotemporal dementia (IBMPFD) [MIM:167320]; also known as muscular dystrophy, limb-girdle, with Paget disease of bone or pagetoid amyotrophic lateral sclerosis or pagetoid neuroskeletal syndrome or lower motor neuron degeneration with Paget-like bone disease. IBMPFD features adult-onset proximal and distal muscle weakness (clinically resembling limb girdle muscular dystrophy), early-onset Paget disease of bone in most cases and premature frontotemporal dementia.,function:Necessary for the fragmentation of Golgi stacks during mitosis and for their reassembly after mitosis. Involved in the formation of the transitional endoplasmic reticulum (tER). The transfer of membranes from the endoplasmic reticulum to the Golgi apparatus occurs via 50-70 nm transition vesicles which derive from part-rough, part-smooth transitional elements of the endoplasmic reticulum (tER). Vesicle budding from the tER is an ATP-dependent process. The ternary complex containing UFD1L, VCP and NPLOC4 binds ubiquitinated proteins and is necessary for the export of misfolded proteins from the ER to the cytoplasm, where they are degraded by the proteasome. The NPLOC4-UFD1L-VCP complex regulates spindle disassembly at the end of mitosis and is necessary for the formation of a closed nuclear envelope (By similarity). Regulates E3 ubiquitin-protein ligase activity of RNF19A.,PTM:Phosphorylated by tyrosine kinases in response to T-cell antigen receptor activation (By similarity). Phosphorylated upon DNA damage, probably by ATM or ATR.,similarity:Belongs to the AAA ATPase family.,subcellular location:Present in the neuronal hyaline inclusion bodies specifically found in motor neurons from amyotrophic lateral sclerosis patients. Present in the Lewy bodies specifically found in neurons from Parkinson disease patients.,subunit:Homohexamer. Forms a ring-shaped particle of 12.5 nm diameter, that displays 6-fold radial symmetry. Part of a ternary complex containing STX5A, NSFL1C and VCP. NSFL1C forms a homotrimer that binds to one end of a VCP homohexamer. The complex binds to membranes enriched in phosphatidylethanolamine-containing lipids and promotes Golgi membrane fusion. Binds to a heterodimer of NPLOC4 and UFD1L, binding to this heterodimer inhibits Golgi-membrane fusion. Interaction with VCIP135 leads to dissociation of the complex via ATP hydrolysis by VCP. Part of a ternary complex containing NPLOC4, UFD1L and VCP. Interacts with NSFL1C-like protein p37; the complex has membrane fusion activity and is required for Golgi and endoplasmic reticulum biogenesis (By similarity). Interacts with SELS/VIMP and SYVN1, as well as with DERL1, DERL2 and DERL3; which probably transfer misfolded proteins from the ER to VCP. Interacts with SVIP. Component of a complex required to couple retrotranslocation, ubiquitination and deglycosylation composed of NGLY1, SAKS1, AMFR, VCP and RAD23B. Directly interacts with UBXD2 and RNF19A. Interacts with CASR. Interacts with UBXN6 and UBE4B.,
Research Area