Summary
Performance
Immunogen
Application
Background
cytoplasmic linker associated protein 1(CLASP1) Homo sapiens CLASPs, such as CLASP1, are nonmotor microtubule-associated proteins that interact with CLIPs (e.g., CLIP170; MIM 179838). CLASP1 is involved in the regulation of microtubule dynamics at the kinetochore and throughout the spindle (Maiato et al., 2003 [PubMed 12837247]).[supplied by OMIM, Mar 2008],function:Microtubule plus-end tracking protein that promotes the stabilization of dynamic microtubules. Required for the polarization of the cytoplasmic microtubule arrays in migrating cells towards the leading edge of the cell. May act at the cell cortex to enhance the frequency of rescue of depolymerizing microtubules by attaching their plus-ends to cortical platforms composed of ERC1 and PHLDB2. This cortical microtubule stabilizing activity is regulated at least in part by phosphatidylinositol 3-kinase signaling. Also performs a similar stabilizing function at the kinetochore which is essential for the bipolar alignment of chromosomes on the mitotic spindle.,PTM:Phosphorylated upon DNA damage, probably by ATM or ATR.,similarity:Belongs to the CLASP family.,similarity:Contains 7 HEAT repeats.,subcellular location:Localizes to microtubule plus ends. Localizes to centrosomes, kinetochores and the mitotic spindle from prometaphase. Subsequently localizes to the spindle midzone from anaphase and to the midbody from telophase. In migrating cells localizes to the plus ends of microtubules within the cell body and to the entire microtubule lattice within the lamella. Localizes to the cell cortex and this requires ERC1 and PHLDB2.,subunit:Interacts with CLIP2, ERC1, MAPRE1, MAPRE3, microtubules, PHLDB2 and RSN. The interaction with ERC1 may be mediated by PHLDB2.,
Research Area
Regulation of Microtubule Dynamics