SMURF 2 (6J9) Rabbit Monoclonal Antibody

SMURF 2 (6J9) Rabbit Monoclonal Antibody

Size1:50μl Price1:$128
Size2:100μl Price2:$230
Size3:500μl Price3:$980
SKU: AMRe18037 Category: Rabbit Monoclonal Antibody Tags: , , ,

Datasheet

Summary

Production Name

SMURF 2 (6J9) Rabbit Monoclonal Antibody

Description

Rabbit Monoclonal Antibody

Host

Rabbit

Application

WB,ELISA

Reactivity

Human,Mouse,Rat

 

Performance

Conjugation

Unconjugated

Modification

Unmodified

Isotype

IgG

Clonality

Monoclonal

Form

Liquid

Storage

Store at 4°C short term. Aliquot and store at -20°C long term. Avoid freeze/thaw cycles.

Buffer

Rabbit IgG in phosphate buffered saline , pH 7.4, 150mM NaCl, 0.02% New type preservative N and 50% glycerol. Store at +4°C short term. Store at -20°C long term. Avoid freeze / thaw cycle.

Purification

Affinity purification

 

Immunogen

Gene Name

SMURF2

Alternative Names

hSMURF2; SMUF2_HUMAN; Smurf2;

Gene ID

64750

SwissProt ID

Q9HAU4

 

Application

Dilution Ratio

WB 1:500~1:1000

Molecular Weight

86kDa

 

Background

E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates. Interacts with SMAD1 and SMAD7 in order to trigger their ubiquitination and proteasome-dependent degradation. E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates (PubMed:11016919). Interacts with SMAD7 to trigger SMAD7-mediated transforming growth factor beta/TGF-beta receptor ubiquitin-dependent degradation, thereby downregulating TGF-beta signaling (PubMed:11163210, PubMed:12717440). In addition, interaction with SMAD7 activates autocatalytic degradation, which is prevented by interaction with AIMP1 (PubMed:18448069). Also forms a stable complex with TGF-beta receptor-mediated phosphorylated SMAD1, SMAD2 and SMAD3, and targets SMAD1 and SMAD2 for ubiquitination and proteasome-mediated degradation (PubMed:11016919, PubMed:11158580, PubMed:11389444). SMAD2 may recruit substrates, such as SNON, for ubiquitin-dependent degradation (PubMed:11389444). Negatively regulates TGFB1-induced epithelial- mesenchymal transition and myofibroblast differentiation (PubMed:30696809).

 

Research Area