Kappa light chain (15R1) Rabbit Monoclonal Antibody

Kappa light chain (15R1) Rabbit Monoclonal Antibody

Size1:50μl Price1:$128
Size2:100μl Price2:$230
Size3:500μl Price3:$980
SKU: AMRe12897 Category: Rabbit Monoclonal Antibody Tags: , , ,

Datasheet

Summary

Production Name

Kappa light chain (15R1) Rabbit Monoclonal Antibody

Description

Rabbit Monoclonal Antibody

Host

Rabbit

Application

WB,ELISA

Reactivity

Human

 

Performance

Conjugation

Unconjugated

Modification

Unmodified

Isotype

IgG

Clonality

Monoclonal

Form

Liquid

Storage

Store at 4°C short term. Aliquot and store at -20°C long term. Avoid freeze/thaw cycles.

Buffer

Rabbit IgG in phosphate buffered saline , pH 7.4, 150mM NaCl, 0.02% New type preservative N and 50% glycerol. Store at +4°C short term. Store at -20°C long term. Avoid freeze / thaw cycle.

Purification

Affinity purification

 

Immunogen

Gene Name

IGKC {ECO:0000303|PubMed:11549845, ECO:0000303|Ref.13}

Alternative Names

HCAK1; Ig kappa chain C region; IGKCD; Immunoglobulin InV;

Gene ID

SwissProt ID

P01834

 

Application

Dilution Ratio

WB 1:1000-1:5000

Molecular Weight

12kDa

 

Background

The five types of immunoglobulin heavy chains are known as: IgG, IgA, IgM, IgD, and IgE. IgG is divided into four subclasses, and IgA is divided into two subclasses. In serum IgA and IgG are monomers with a single 4 polypeptide unit; while, IgM is a pen tamer. IgA may also form polymers. Kappa light chain antibody can be used for the identification of leukemias, plasmacytomas and certain non Hodgkin's lymphomas. Constant region of immunoglobulin light chains. Immunoglobulins, also known as antibodies, are membrane-bound or secreted glycoproteins produced by B lymphocytes. In the recognition phase of humoral immunity, the membrane-bound immunoglobulins serve as receptors which, upon binding of a specific antigen, trigger the clonal expansion and differentiation of B lymphocytes into immunoglobulins- secreting plasma cells. Secreted immunoglobulins mediate the effector phase of humoral immunity, which results in the elimination of bound antigens (PubMed:22158414, PubMed:20176268). The antigen binding site is formed by the variable domain of one heavy chain, together with that of its associated light chain. Thus, each immunoglobulin has two antigen binding sites with remarkable affinity for a particular antigen. The variable domains are assembled by a process called V-(D)-J rearrangement and can then be subjected to somatic hypermutations which, after exposure to antigen and selection, allow affinity maturation for a particular antigen (PubMed:17576170, PubMed:20176268).

 

Research Area