Product Name: LOXL2 (9U1) Rabbit Monoclonal

Antibody

Catalog #: AMRe13377

Summary

Production Name LOXL2 (9U1) Rabbit Monoclonal Antibody

Description Rabbit Monoclonal Antibody

Host Rabbit
Application WB

Reactivity Human, Mouse, Rat

Performance

Conjugation	Unconjugated
Modification	Unmodified
Isotype	IgG
Clonality	Monoclonal
Form	Liquid
Storage	Store at 4°C short term. Aliquot and store at -20°C long term. Avoid freeze/thaw cycles.
	Rabbit IgG in phosphate buffered saline , pH 7.4, 150mM NaCl, 0.02% New type
Buffer	preservative N and 50% glycerol. Store at +4°C short term. Store at -20°C long term.
	Avoid freeze / thaw cycle.
Purification	Affinity purification

Immunogen

Gene Name LOXL2

Alternative Names LOR2; LOX L2; LOXL2; Lysyl oxidase homolog 2; Lysyl oxidase like 2; WS9 14;

 Gene ID
 4017.0

 SwissProt ID
 Q9Y4K0.

Application

Dilution Ratio WB 1:500-1:2000

Molecular Weight 87kDa

 Product Name: LOXL2 (9U1) Rabbit Monoclonal

Antibody

Catalog #: AMRe13377

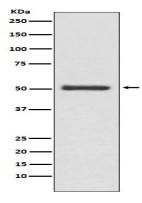
Background

Mediates the post-translational oxidative deamination of lysine residues on target proteins leading to the formation of deaminated lysine (allysine). When secreted in extracellular matrix, promotes cross-linking of extracellular matrix proteins by mediating oxidative deamination of peptidyl lysine residues in precursors to fibrous collagen and elastin. Mediates the post-translational oxidative deamination of lysine residues on target proteins leading to the formation of deaminated lysine (allysine) (PubMed: 27735137). Acts as a transcription corepressor and specifically mediates deamination of trimethylated 'Lys-4' of histone H3 (H3K4me3), a specific tag for epigenetic transcriptional activation (PubMed: 27735137). Shows no activity against histone H3 when it is trimethylated on 'Lys-9' (H3K9me3) or 'Lys-27' (H3K27me3) or when 'Lys-4' is monomethylated (H3K4me1) or dimethylated (H3K4me2) (PubMed: 27735137). Also mediates deamination of methylated TAF10, a member of the transcription factor IID (TFIID) complex, which induces release of TAF10 from promoters, leading to inhibition of TFIID-dependent transcription (PubMed: 25959397). LOXL2-mediated deamination of TAF10 results in transcriptional repression of genes required for embryonic stem cell pluripotency including POU5F1/OCT4, NANOG, KLF4 and SOX2 (By similarity). Involved in epithelial to mesenchymal transition (EMT) via interaction with SNA11 and participates in repression of E-cadherin CDH1, probably by mediating deamination of histone H3 (PubMed: 16096638, PubMed:27735137, PubMed:24414204). During EMT, involved with SNAI1 in negatively regulating pericentromeric heterochromatin transcription (PubMed: 24239292). SNAI1 recruits LOXL2 to pericentromeric regions to oxidize histone H3 and repress transcription which leads to release of heterochromatin component CBX5/HP1A, enabling chromatin reorganization and acquisition of mesenchymal traits (PubMed: 24239292). Interacts with the endoplasmic reticulum protein HSPA5 which activates the IRE1-XBP1 pathway of the unfolded protein response, leading to expression of several transcription factors involved in EMT and subsequent EMT induction (PubMed:28332555). Involved in E-cadherin repression following hypoxia, a hallmark of EMT believed to amplify tumor aggressiveness, suggesting that it may play a role in tumor progression (PubMed: 20026874). When secreted into the extracellular matrix, promotes cross-linking of extracellular matrix proteins by mediating oxidative deamination of peptidyl lysine residues in precursors to fibrous collagen and elastin (PubMed: 20306300). Acts as a regulator of sprouting angiogenesis, probably via collagen IV scaffolding (PubMed: 21835952). Acts as a regulator of chondrocyte differentiation, probably by regulating expression of

Web: https://www.enkilife.com E-mail: order@enkilife.com techsupport@enkilife.com Tel: 0086-27-87002838

Product Name: LOXL2 (9U1) Rabbit Monoclonal

Antibody


Catalog #: AMRe13377

factors that control chondrocyte differentiation (By similarity).

Research Area

Image Data

Western blot analysis of LOXL2 expression in MCF7 cell lysate.

Note

For research use only.

Web: https://www.enkilife.com E-mail: order@enkilife.com techsupport@enkilife.com Tel: 0086-27-87002838